枚举类型常被用于实现特定类或结构体的功能。也能够在有多种变量类型的环境中,方便地定义通用类或结构体来使用,为了实现这种功能,Swift允许你定义类型嵌套,可以在枚举类型、类和结构体中定义支持嵌套的类型。 要在一个类型中嵌套另一个类型,将需要嵌套的类型的定义写在被嵌套类型的区域{}内,而且可以根据需要定义多级嵌套。 类型嵌套实例 下面这个例子定义了一个结构体BlackjackCard(二十一点),用来模拟BlackjackCard中的扑克牌点数。BlackjackCard结构体包含2个嵌套定义的枚举类型Suit 和…
Swift中文教程(二十) 扩展
扩展就是向一个已有的类、结构体或枚举类型添加新功能(functionality)。这包括在没有权限获取原始源代码的情况下扩展类型的能力(即逆向建模)。扩展和 Objective-C 中的分类(categories)类似。(不过与Objective-C不同的是,Swift 的扩展没有名字。)
Swift 中的扩展可以:
- 添加计算型属性和计算静态属性
- 定义实例方法和类型方法
- 提供新的构造器
- 定义下标
- 定义和使用新的嵌套类型
- 使一个已有类型符合某个接口
注意:
如果你定义了一个扩展向一个已有类型添加新功能,那么这个新功能对该类型的所有已有实例中都是可用的,即使它们是在你的这个扩展的前面定义的。
扩展语法(Extension Syntax)
声明一个扩展使用关键字extension
:
extension SomeType { // 加到SomeType的新功能写到这里 }
一个扩展可以扩展一个已有类型,使其能够适配一个或多个协议(protocol)。当这种情况发生时,接口的名字应该完全按照类或结构体的名字的方式进行书写:
extension SomeType: SomeProtocol, AnotherProctocol { // 协议实现写到这里 }
按照这种方式添加的协议遵循者(protocol conformance)被称之为在扩展中添加协议遵循者
计算型属性(Computed Properties)
扩展可以向已有类型添加计算型实例属性和计算型类型属性。下面的例子向 Swift 的内建Double
类型添加了5个计算型实例属性,从而提供与距离单位协作的基本支持。
extension Double { var km: Double { return self * 1_000.0 } var m : Double { return self } var cm: Double { return self / 100.0 } var mm: Double { return self / 1_000.0 } var ft: Double { return self / 3.28084 } } let oneInch = 25.4.mm println("One inch is (oneInch) meters") // 打印输出:"One inch is 0.0254 meters" let threeFeet = 3.ft println("Three feet is (threeFeet) meters") // 打印输出:"Three feet is 0.914399970739201 meters"
这些计算属性表达的含义是把一个Double
型的值看作是某单位下的长度值。即使它们被实现为计算型属性,但这些属性仍可以接一个带有dot语法的浮点型字面值,而这恰恰是使用这些浮点型字面量实现距离转换的方式。
在上述例子中,一个Double
型的值1.0
被用来表示“1米”。这就是为什么m
计算型属性返回self
——表达式1.m
被认为是计算1.0
的Double
值。
其它单位则需要一些转换来表示在米下测量的值。1千米等于1,000米,所以km
计算型属性要把值乘以1_000.00
来转化成单位米下的数值。类似地,1米有3.28024英尺,所以ft
计算型属性要把对应的Double
值除以3.28024
来实现英尺到米的单位换算。
这些属性是只读的计算型属性,所有从简考虑它们不用get
关键字表示。它们的返回值是Double
型,而且可以用于所有接受Double
的数学计算中:
let aMarathon = 42.km + 195.m println("A marathon is (aMarathon) meters long") // 打印输出:"A marathon is 42495.0 meters long"
注意:
扩展可以添加新的计算属性,但是不可以添加存储属性,也不可以向已有属性添加属性观测器(property observers)。
构造器(Initializers)
扩展可以向已有类型添加新的构造器。这可以让你扩展其它类型,将你自己的定制类型作为构造器参数,或者提供该类型的原始实现中没有包含的额外初始化选项。
注意:
如果你使用扩展向一个值类型添加一个构造器,该构造器向所有的存储属性提供默认值,而且没有定义任何定制构造器(custom initializers),那么对于来自你的扩展构造器中的值类型,你可以调用默认构造器(default initializers)和成员级构造器(memberwise initializers)。 正如在值类型的构造器授权中描述的,如果你已经把构造器写成值类型原始实现的一部分,上述规则不再适用。
下面的例子定义了一个用于描述几何矩形的定制结构体Rect
。这个例子同时定义了两个辅助结构体Size
和Point
,它们都把0.0
作为所有属性的默认值:
struct Size { var width = 0.0, height = 0.0 } struct Point { var x = 0.0, y = 0.0 } struct Rect { var origin = Point() var size = Size() }
因为结构体Rect
提供了其所有属性的默认值,所以正如默认构造器中描述的,它可以自动接受一个默认的构造器和一个成员级构造器。这些构造器可以用于构造新的Rect
实例:
let defaultRect = Rect() let memberwiseRect = Rect(origin: Point(x: 2.0, y: 2.0), size: Size(width: 5.0, height: 5.0))
你可以提供一个额外的使用特殊中心点和大小的构造器来扩展Rect
结构体:
extension Rect { init(center: Point, size: Size) { let originX = center.x - (size.width / 2) let originY = center.y - (size.height / 2) self.init(origin: Point(x: originX, y: originY), size: size) } }
这个新的构造器首先根据提供的center
和size
值计算一个合适的原点。然后调用该结构体自动的成员构造器init(origin:size:)
,该构造器将新的原点和大小存到了合适的属性中:
let centerRect = Rect(center: Point(x: 4.0, y: 4.0), size: Size(width: 3.0, height: 3.0)) // centerRect的原点是 (2.5, 2.5),大小是 (3.0, 3.0)
注意:
方法(Methods)
扩展可以向已有类型添加新的实例方法和类型方法。下面的例子向Int
类型添加一个名为repetitions
的新实例方法:
extension Int { func repetitions(task: () -> ()) { for i in 0..self { task() } } }
这个repetitions
方法使用了一个() -> ()
类型的单参数(single argument),表明函数没有参数而且没有返回值。
定义该扩展之后,你就可以对任意整数调用repetitions
方法,实现的功能则是多次执行某任务:
3.repetitions({ println("Hello!") }) // Hello! // Hello! // Hello!
可以使用 trailing 闭包使调用更加简洁:
3.repetitions{ println("Goodbye!") } // Goodbye! // Goodbye! // Goodbye!<a name="mutating_instance_methods"></a>
修改实例方法(Mutating Instance Methods)
通过扩展添加的实例方法也可以修改该实例本身。结构体和枚举类型中修改self
或其属性的方法必须将该实例方法标注为mutating
,正如来自原始实现的修改方法一样。
下面的例子向Swift的Int
类型添加了一个新的名为square
的修改方法,来实现一个原始值的平方计算:
extension Int { mutating func square() { self = self * self } } var someInt = 3 someInt.square() // someInt 现在值是 9
下标(Subscripts)
扩展可以向一个已有类型添加新下标。这个例子向Swift内建类型Int
添加了一个整型下标。该下标[n]
返回十进制数字从右向左数的第n个数字
- 123456789[0]返回9
- 123456789[1]返回8
…等等
extension Int { subscript(digitIndex: Int) -> Int { var decimalBase = 1 for _ in 1...digitIndex { decimalBase *= 10 } return (self / decimalBase) % 10 } } 746381295[0] // returns 5 746381295[1] // returns 9 746381295[2] // returns 2 746381295[8] // returns 7
如果该Int
值没有足够的位数,即下标越界,那么上述实现的下标会返回0,因为它会在数字左边自动补0:
746381295[9] //returns 0, 即等同于: 0746381295[9]<a name="nested_types"></a>
嵌套类型(Nested Types)
扩展可以向已有的类、结构体和枚举添加新的嵌套类型:
extension Character { enum Kind { case Vowel, Consonant, Other } var kind: Kind { switch String(self).lowercaseString { case "a", "e", "i", "o", "u": return .Vowel case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z": return .Consonant default: return .Other } } }
该例子向Character
添加了新的嵌套枚举。这个名为Kind
的枚举表示特定字符的类型。具体来说,就是表示一个标准的拉丁脚本中的字符是元音还是辅音(不考虑口语和地方变种),或者是其它类型。
这个类子还向Character
添加了一个新的计算实例属性,即kind
,用来返回合适的Kind
枚举成员。
现在,这个嵌套枚举可以和一个Character
值联合使用了:
func printLetterKinds(word: String) { println("'\(word)' is made up of the following kinds of letters:") for character in word { switch character.kind { case .Vowel: print("vowel ") case .Consonant: print("consonant ") case .Other: print("other ") } } print("n") } printLetterKinds("Hello") // 'Hello' is made up of the following kinds of letters: // consonant vowel consonant consonant vowel
函数printLetterKinds
的输入是一个String
值并对其字符进行迭代。在每次迭代过程中,考虑当前字符的kind
计算属性,并打印出合适的类别描述。所以printLetterKinds
就可以用来打印一个完整单词中所有字母的类型,正如上述单词"hello"
所展示的。
注意:
由于已知
character.kind
是Character.Kind
型,所以Character.Kind
中的所有成员值都可以使用switch
语句里的形式简写,比如使用.Vowel
代替Character.Kind.Vowel
本文部分原文来自于http://www.swiftguide.cn/翻译小组的译文,共同校对中。
感谢翻译小组成员:李起攀(微博)、若晨(微博)、YAO、粽子、山有木兮木有枝、渺-Bessie、墨离、矮人王、CXH、Tiger大顾(微博)
原始链接http://letsswift.com/2014/06/extensions/
Related Posts
- Swift中文教程(十九) 类型嵌套
- Moodle: 查询 / 更新 / 添加 / 删除 / 导出 用户 ($DB用法)
1. 添加用户 require_once('config.php'); // config.php under root folder require_once($CFG->dirroot…
- Swift中文教程(十八) 类型检查
类型检查是一种检查类实例的方式,并且或者也是让实例作为它的父类或者子类的一种方式。 类型检查在 Swift 中使用is 和 as操作符实现。这两个操作符提供了一种简单达意的方式去检查值的类型或者转换它的类型。 你也可以用来检查一个类是否实现了某个协议,就像在…